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Isotropic theoretical angular correlation of annihilation 
radiation spectra for positrons trapped at an A1 surface? 
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Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 
50-950 Wroctaw 2,  P O  Box 937, Poland 

Received 6 December 1988, in final form 28 April 1989 

Abstract. The electronic properties of an AI surface are computed within the jellium model. 
The positron annihilation characteristics are calculated for a correlated electron-positron 
system using the Kahana-type momentum-dependent enhancement factors in a local way. 
For the first time, the change of the anisotropy direction in the shape of theoretical angular 
correlationof annihilation radiation spectra for positrons trappedat an Alsurface isobtained. 
The resulting momentum distribution is almost isotropic, in agreement with experimental 
data. 

1. Introduction 

A beam of mono-energetic positrons, in the energy range from below 1 eV up to a few 
tenths of a kiloelectronvolt, is a new tool to probe the electronic properties of metal 
surfaces. Interest in experiments with low-energy positrons (for reviews see, e.g. Mills 
1983, Dupasquier and Zecca 1985) has increased in the last few years, since the pro- 
duction of the first usable beam of slow positrons and the measurement of their inter- 
actiori with a metal surface by Canter et a1 (1974). Particularly, the well known angular 
correlation of annihilation radiation (ACAR) technique (for a review see West 1974) 
appears promising for momentum spectroscopy of electron surface states. 

Resent measurement of ~ Y A C A R  from a 99.9999% clean Al( 100) surface, performed 
by Lynn et ai (1985) using a beam of 200 eV positrons, showed a surprising result: the 
momentum distribution of annihilating pairs identified with the positron surface state 
had nearly isotropic shape. The full width at half-maximum (FWHM) of ACAR spectra was 
equal to 7.1 3 0.5 mrad for both directions-parallel and perpendicular to the surface. 
On the other hand, the majority of these spectra calculated theoretically until now for 
the A1 surface showed an anisotropy, with momentum perpendicular to the surface ( p l  ) 
broader than the parallel ( p , , )  component. The only exceptions are the results of Brown 
et a1 (1988a, b) and Lou Yongming (1988), both obtained within independent-particles 
model (IPM) (the possibilities of this isotropy are discussed by Rubaszek (1989)). 

The theoretical calculations of slow positron interaction with a metal surface are 
based on two alternative models: (i) the surface positron is assumed to be a positronium 
(Ps) weakly bound to the surface by van der Waals forces (Platzman and Tzoar 1986); 
or (ii) the positron is tightly bound to the surface in the image-induced correlation 
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potential well (Hodges and Stott 1973, Nieminen and Manninen 1974, Rozenfeld et a1 
1983, Brown et a1 l987,1988a, b, Lou Yongming 1988). 

The approach of Platzman and Tzoar (1986) appeared to be very advantageous 
because it led to results for positron lifetime z and binding energy E, in excellent 
agreement with experimental data (Lynn et a1 1984, Mills and Pfeiffer 1979, respect- 
ively). In particular, the theoretical value z = 580 ps (i.e. about 15% longer than the 
lifetime of a free positronium atom) was obtained by these authors, for the first time 
based on more physical grounds than any ad hoc procedure assuming an unphysical cut- 
off in local annihilation rate. The deficiency of the Platzman-Tzoar formalism, however, 
consists of the fact that reactive atoms do not physisorb on metals and that the model 
neglects the pick-off processes, important for Ps annihilation. It should also be pointed 
out that the ACAR spectra (which are the centre of interest of the present work) have not 
been calculated explicitly by Platzman and Tzoar (1986) but only predicted. In the 
direction parallel to the surface, the shape of the angular correlation was simply related to 
the Fourier transform of the wavefunction of the system, i.e. approximately Lorentzian 
squared with FWHM equal to 2(p2) : /*  = 4.8 mrad. In the direction perpendicular to the 
surface, the momentum distribution was not determined by these authors and the FWHM 
was only predicted to be equal to about 4.8 mrad. 

The effective calculations of ACAR from an A1 surface performed within the model 
of a positron trapped in the potential well are based either on &he independent-particles 
model (IPM) (Rozenfeld et a1 1983, Lou Yongming 1988) or on the mixed-density 
approximation (MDA) (Nieminen and Manninen 1974, Brown et a1 1987, 1988a, b). It 
should be mentioned here that the MDA (introduced by Arponen et a1 1973), which 
turned out to be very efficient for investigating positron annihilation at lattice defects, 
seems to be rather controversial in the case of positron interaction with a metal surface 
because of the infinite size of vacuum, treated as a large void. This fact will be discussed 
in detail in Q 2.3 (see also Rubaszek 1989). Moreover, in contradiction to the positronium 
model, almost all the ACAR spectra obtained within this second formalism for the 
correlated systemwere anisotropic for the A1 surface, with the distributionof momentum 
perpendicular to the surface, N ( p , ) ,  broader than the parallel one, N(p1) (this ani- 
sotropy varies from 10% to 50%). It is difficult to reconcile this result with the slow- 
positron experiment of Lynn et al (1985). The only exceptions are the isotropic IPM 
spectra obtained by Lou Yongming (1988) for a very simple electron model potential 
and those by Brown et a1 (1988a, b), contradicting their previous strong anisotropic IPM 
result (Brown et a1 1987). We would like to mention here that the possibilities of 
full isotropy of IPM surface ACAR spectra are discussed by Rubaszek (1989) using the 
autocorrelation function method. This isotropy appeared to be strongly dependent on 
the translational properties of the electron and positron wavefunctions perpendicular 
to the surface. It should also be pointed out that the IPM, neglecting electron-positron 
correlations, cannot be treated as satisfactory for the surface problem. Near the surface 
the electron density rapidly decreases and the effect of these correlations is pronounced. 
Therefore, it should be included into the formalism while calculating surface ACAR 
spectra. 

Finally it should be noted here that there is a discrepancy (as concerns the anisotropy 
of ACAR spectra from an AI surface) not only between various theories and between 
theory and experiment, but also between various experiments. Ewertowski and Swigt- 
kowski (1987) performed an experiment with a multilayer AI/A1,0, foil using fast 
positrons and obtained an anisotropic shape of ACAR spectra. However, in this case 
there is uncertainty concerning the fraction of positrons diffusing to the surface and the 
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fraction annihilating in the bulk material. Moreover, positronium should not be formed 
in the interface region. 

The shape of theoretical ACAR spectra from a metal surface is still an open problem 
and there is a real need to determine these spectra within the reliable fully correlated 
electron-positron model. In the present work some attempt in this direction is made. 
We have abandoned the approach of Platzman and Tzoar (1986) because the ACAR 
coming from this formalism does not reflect the electron momentum distribution 
(Walker and Nieminen 1986). The ACAR spectra were calculated by us within the model 
of a positron bound to the surface in its image-correlation well, but in a new way, beyond 
MDA. The differences between the present approach and the MDA are that the density of 
electrons on the positron is enhanced not only locally (as in MDA) but also separately for 
particular electronic states as well as that the exact form of the electron wavefunctions 
is used instead of the plane waves assumed in MDA (as is discussed by Rubaszek (1989)).  

Using the present formalism instead of MDA is substantiated by the fact that ACAR 
spectra yield information about the separate electronic states, while calculations within 
MDA are based on total density of electrons and (incorrect at the surface region) the 
assumption that electron wavefunctions are in the form of plane waves. Applying the 
local enhancement factors (Daniuk et a1 1985, 1987) of Kahana type (Rubaszek and 
Stachowiak 1988) leads to reversal of anisotropy (with respect to IPM) with N(p1,) only 
slightly broader than N ( p , )  and allows one to predict the isotropic shape of ACAR 
spectra, in agreement with the experimental data of Lynn et a1 (1985). 

2. Formalism 

Our calculations are performed within the jellium model, where the ions are thought of 
as forming a constant positive background charge within the metal (and to be confined 
to the negative half-space): 

where po = 3/(47cr:) is the electron density in the bulk material and r, is the Wigner- 
Seitz radius (for Al, r, = 2.07). The z axis is perpendicular to the surface and the vacuum 
is located in the positive half-space, z > 0. Atomic units are used throughout: h = m = 
e = 1. 

2.1. Electrons at the svrface 

In the absence of a positron the (unnormalised) electron wavefunctions q i ( r )  are 
assumed in the form 

'1ClW = exp[i(kxx + k y Y ) I W k , ( Z )  (1) 
where r = [x, y ,  21. Functions q k , ( z )  obey the set of Schrodinger equations: 

with boundary conditions 

V k , ( W )  = 0 and v k , ( - c Q )  = sin[kzz + 
where the phase shifts y ( k )  are continuous and y(0) = 0. In equation (2) kF denotes the 
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Fermi momentum of the bulk material, corresponding to r,. According to the condition 
of the neutrality of the metal, the y(k) satisfy the Sugiyama-Langreth (Langreth 1972) 
phase-shift rule: 

(2/k$) jkFky(k)  d k  = n/4. 
0 

In equation (2) V,, is an effective potential acting on electrons, and consists of elec- 
trostatic (Vc) and exchange-correlation (V,,) parts: 

Veff(Z1 = VC(Z> + Vxc(Z>. (3) 
The Coulomb potential Vc satisfies the Poisson equation with respect to the electron 
density, p(z): 

where 

In this work equations (2)-(5) were solved self-consistently within the iterative 
scheme proposed by Manninen et a1 (1975) and adapted to the finite space by Monnier 
and Perdew (1978). In the (n + 1)th iterative step the potential V'&+' was determined, 
based on the values of electron density p"(z) obtained in the nth step, according to the 
formula 

P 
v~+'(z) = [ 1 / ( 2 ~ ) 1  j dz1{4X[p"(zl) - Pion(z1>1+ KV;(z1))exp(-Klz - 21 11 

(Y 

+ f{v;(a) - ( ~ / ~ ) [ V ; l ' ( ~ ) ) e x p ( - ~ / ~  - al) 

+ 2{V"C(P) - (1/K)[Vn,l'(P))exp(-KI(P - 20 (6) 

where [V;]'(z) = (d/dz)V",z) and K is a constant securing the convergence of the 
procedure. In our calculations we chose a = -7n/kF,  /3 = 3n/kF (outside of this region 
6p(z) = p(z)  - piOn(z) is negligible) and K = kF. The potential Vc was scaled to the bulk 
chemical potential inside the metal (i.e. Vc(z) = i!k$ + V,,(po) = p for z < a). 

In our calculations the electron-electron correlations and exchange are treated in a 
local way, i.e. neglecting all the terms proportional to the gradients of the density, and 
they are given by 

where E,,(P) is the exchange and correlation energy per particle in the electron gas of 
density p(z). In this work E,, was in Wigner's form (Pines 1963), where the density of 
homogeneous electron gas was replaced by its local value 

0.458 0.44 
[P(')1 = -r,(z> - y ,  (2) + 7.8 ' 

Here rs(z) = [ S n p ( ~ ) ] - ~ / ~ .  It was verified that using the other approximations for E,, 
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(e.g. Gunnarson et all979, Ceperley and Alder 1980) affects the results only very slightly 
(within a few per cent). 

2.2. Positron wavefunction 

At zero temperature the positron has zero momentum parallel to the surface and its 
ground-state wavefunction is in the form 

The (normalised) wavefunction V+(z) is the solution of the one-dimensional 
Schrodinger equation 

with boundary conditions V + ( ? m )  = 0 and V ~ ( T x )  = 0. Here E+ = EB - @+, where 
EB is the binding energy relative to vacuum, @+ is the positron work function and 
V+(z)  is a positron potential. In this work V+ was determined, based on the values of 
electrostatic potential Vc(z), in the way proposed by Brown et a1 (1987). First, the 
positron potential Vp was defined as 

where E,,,, is the electron-positron correlation energy, taken in this work in the form 
(Bhattacharyya and Singwi 1972) 

E , , , , ( Y ~ )  = 0.25 + 6.1 exp[-0.965(rs - l)]. 

It should be pointed out that Vp is not determined self-consistently. Therefore, in 
order to ensure that the electron-positron potential V+ has the correct vacuum limit 
( V + ( m )  = -0.25 au = -6.8 eV) and that in the bulk material it is equal to the negative 
positron work function l @ + l  ( V + ( - m )  = -@+ = 0.19 eV (Mills 1983 and references 
therein)), V, is scaled to give 

V+ (2) = A [ V P ( z )  + 0.251 - 0.25 

where 

A = (0.25 - @+)/[0.25 + V,(-m)]. 

At large distances from the surface V+ is given by the shifted image potential 
(Nieminen and Manninen 1974): 

where the shift in the image plane, zI, for aluminium is equal to 1.6 au. This image 
potential is truncated at zo ,  where it intersects with the correlation potential. 
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2.3. ACAR spectra 

The momentum distribution of annihilating pairs is given by the well known formula 

wherep = [p,, p y , p r ]  and y;P(x,, xp)  is the pair wavefunction of the thermalised posi- 
tron at xp and the electron in the initial state k located at x,. The summation in equation 
(8) is over all occupied electronic states k .  

In the IPM, v;P(r, r)  = v +  (r)y!(r)  and, taking into account the forms (1) and (7) of 
tp! and W + ,  formula (8) simplifies to 

2 

"P"(P) = JOY dk,  1 j-; exP(-iPzz) v + ( z >  v&) dz j . (9) 

where y = (kk - p: - P ; ) ' / ~ .  
However, it is well known that electron density on the positron is strongly enhanced 

from its initial value. Therefore, IPM is not satisfactory and electron-positron correlations 
cannot be neglected in equation (8). MDA includes these correlations in the average and 
for the jellium surface leads to the momentum distribution in the form (Brown et a1 
1987): 

N ( p )  = lm dR, j= d z  cos(P,z)v+ ( z 1 ) v +  (z2)r[P(R,)1 sin(f=)/[Zk:(R,)l (10) 
-m 0 

where K = [k$(R,) - p x  - p,] ' I 2 ,  z1 = R, + 2/2, z2 = R, - z/2 and k&) = [37~~p(z)] ' /~ 
is the local Fermi momentum. Here T [ p ( z ) ]  denotes the local annihilation rate. 

As it stands, equation (10) is impossible to calculate due to the factor kF3 (R,), which 
causes divergence of the integral for Rz- CO. Nieminen et aZ(l984) and Brown et a1 
(1987,1988b) overcame this difficulty by imposing a cut-off in T(p )  by putting T[p(z)] = 
0 for z greater than some 2,. However, it is difficult to substantiate this method on 
physical grounds (as has been explained in detail by Rubaszek (1989)). Moreover, the 
resulting annihilation characteristics are found to be strongly dependent on the cut-off 
position z,  (Brown et a1 1987). 

Recently Brown et a1 (1988a, b) published the results of atomistic calculations of a 
positron trapped at a monovacancy on an A1 surface, performed within MDA. In these 
works the ACAR spectra calculated with and without cut-off of annihilation rate r are 
quoted. However, avoiding this cut-off would only be possible if at least the condition 
1 v+(x,, y,, z ,  + z )  ~ ' /p(x,, yv, z,  + z )  + Ofor z -  m was fulfilled, where (x,, y,, z,) is the 
position of the vacancy. This means that the positron is so strongly localised per- 
pendicular to the surface at the vacancy that it is not extended to the vacuum. If the 
vacancy is located in the second or  in one of the next atomic layers, the requirement of 
convergence of MDA integrand is obviously fulfilled because in this case the formalism 
used in the papers by Brown et a1 (1988a, b) reduces the problem to trapping of a positron 
in a vacancy in the bulk material (cf., e.g. Arponen et a1 1973). These results, however, 
could not be compared with the slow-positron experimental data. If the vacancy is 
located in the first atomic layer, the situation is different. Nieminen and Puska (1983) 
performed atomistic calculations of the electron and positron distributions in the neigh- 
bourhood of a monovacancy located in the first atomic layer of an Al( 110) surface (this 
formalism is used in the papers by Brown et a1 (1988a, b) as well). According to the 
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results of Nieminen and Puska (1983) the positron wavefunction v+(xv, yv, z )  is more 
extended to the vacuum (perpendicular to the surface) than the electron density 
p(xv, yv, z )  (see figure 2 of the paper by Nieminen and Puska). Avoiding the cut-off of 
local annihilation rate r, while calculating ACAR spectra within MDA, would only be 
possible if in the neighbourhood of the vacancy the positron wavefunction vanished in 
the vacuum more rapidly than the electron density, in contradiction to the results of 
Nieminen and Puska (1983). Unfortunately, Brown et a1 (1988a, b) do not present 
electron and positron distributions and therefore it is difficult to judge how far the 
requirement of convergence of MDA integrand is satisfied. The uncertainty about the 
calculations of Brown et a1 (1988a, b) is also connected with the fact that the conclusions 
of the 1988a paper are in disagreement with those of the 1988b paper, while some 
conclusions of both 1988 papers contradict the previously published ones (Brown et a1 
1987). Finally it should be stressed that, in spite of the defected surface, for the ideal 
metal surface the MDA integrand diverges if the cut-off in the local annihilation rate r is 
not imposed. 

Another problem, connected with the applicability of the MDA to the surface prob- 
lem, should be discussed. The simplest test for any approach enabling us to calculate 
ACAR spectra is IPM, imposing no enhancement of electron density on the positron. 
Within MDA, IPM calculations reduce to using, in equation (lo),  the free Sommerfeld 
annihilation rate in the form 

r[p(z)] = n&p(z)  = 16nk;(z)/3. 

Of course, if the annihilation rate is applied in this form, no divergence in expression 
(10) occurs, in contrast to the enhanced model (where r [ p ( z ) ]  -+ 2 if p(z)  -+ 0). We 
computed one-dimensional IPM distributions N ( p , , )  according to formulae (9) and (10) 
and found significant differences, as discussed in §3.2.  Therefore, for the surface 
problem, MDA is not consistent with the definition of momentum distribution of annihil- 
ating pairs, given by formulae (8) or (9), because it uses improper electron wavefunctions 
(this fact is explained on mathematical grounds by Rubaszek (1989)). For this reason a 
great deal of caution is necessary when comparing surface ACAR spectra obtained within 
MDA with those calculated within IPM according to the formula (9) as well as when 
drawing conclusions about the shape of ACAR spectra following from MDA. 

The present approach allows one to avoid both problems, i.e. the convergence of 
the integrand expression and the consistency with the definition of ACAR distribution. 
The ACAR spectra are calculated in a different way, beyond MDA. We base our approach 
on the local-density approximation (LDA) introduced by Daniuk et a1 (1985, 1987). 
Within LDA the functions viP(r, r)  in ACAR formula (8) are obtained from the definition 
of momentum-dependent enhancement factors E(k, xp) introduced by Kahana (1963): 

Thus, the particular electronic states are enhanced separately and locally, including 
an enhancement factor to the integrand. From formulae (l), (7), (8) and (11) we obtain 

(12) 
It should be stressed here that the enhancement factors E in formula (12) need not 
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be the ones following from the Kahana theory. Others, more appropriate for the surface 
problem, should be used in (12)  if available (see also remarks of Rubaszek (1989)). 

It can be seen that the electron-positron enhancement factors E are dependent not 
only on the local electron density (as in MDA) but also on the electronic state k,. 
Therefore, the electron-positron pair wavefunctions are enhanced separately for par- 
ticular electronic states, while within MDA only locally so. The main difference, however, 
is in using exact electron wavefunctions q k ( z )  instead of plane waves assumed in MDA 
(the detailed discussion is given in Rubaszek (1989)). 

When formula (12)  is used instead of (10) no divergence of the integrand occurs as 
z+ TJ, This follows from the fact that, although ~ ( p ,  rS(z ) )  is of order [rS(z)l3 and 
therefore tends to infinity if rS+ x ,  nevertheless [ v k , ( Z ) ] *  is of order [ r , ( ~ ) ] - ~  (cf. 
equation ( 5 ) ;  [rS(z) l3  is the inverse of the local electron density p ( z ) ) .  Thus, for z-+ x 

the product of [ ~ ( p ,  r , ( ~ ) ) ] ' / *  and qk , (z )  converges to a constant, dependent o n p  and 
k,. This feature was also checked numerically up to r,(z) = 300. The function v + ( z )  is 
normalised (to unity) and lexp(ip,z)l = 1, so the whole expression is without doubt 
integrable over the z axis. Moreover, this formalism is consistent with classical IPM 
formula (9): putting E = 1 in formula (12)  we simply switch to formula (9 ) .  The other 
advantages of the present formalism will be discussed in § 3.2. 

The total annihilation rate A ,  being the inverse of positron lifetime z (i.e. A = l / t ) ,  
was calculated in two equivalent ways, from the formula 

A l  = ( r8c /8nZ)  1 N ( P )  d p  

or directly from 

where 

T(z) = (2r;c/n)  / k F  dk, [q/lk,(z)]2 f k F  t&(t, Z )  dt. 

Equations (13b) and (13c) are similar to those coming from the MDA and lead to similar 
results. However, this is not so with ACAR spectra. The detailed discussion will be given 
in § 3.2. 

In our calculations (equations (12)  and (13 ) )  the momentum-dependent enhance- 
ment factors ~ ( p )  obtained within fully self-consistent Kahana theory (Rubaszek and 
Stachowiak 1988) were used. 

3. Results and discussion 

3.1. Electronic properties of A1 surface 

The electron density profile at the A1 surface, p(z) ,  as well as the potentials V,,, and V,, 
obtained self-consistently from equations (2)-(5) in the way presented in § 2.1, are 
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Figure 1. Electron density profile at an AI surface, 
p(z) /po,  obtained self-consistently from 
equations (2)-(5). 

-0 6. 

-0 8: i 
Figure 2. The effective electron potential V,,, and its Coulomb part V ,  

Table 1. The values of electron work function CP- and electrostatic dipole barrier D obtained 
within various electron-gas theories (all values in electronvolts). 

Lang and Kohn Monnier and Experiment 
This work Smith (1969) (1971) Perdew (1978) (Fomenko 1966) 

D 6.59 6.03 6.26 6.24 - 
CP- 4.223 3.64 3.87 3.88 4.25 

shown in figures 1 and 2, respectively. Friedel oscillations of p near the surface are 
observed. It should be noted here that these oscillations, having a crucial effect on the 
valuesof the electron work function CP- and dipole barrier D, were completely neglected 
in Smith’s (1969) calculations. Lang and Kohn’s (1971) formalism leads to oscillating 
electron profiles; nevertheless the values of the work function resulting from their 
computations are found to be appreciably lower than experimental ones (cf. table 1). 

The electron work function <p- is one of the most important surface parameters, 
characteristic of a given metal. It is usually defined as the minimum energy necessary to 
eject an electron from the metal and is given by 

0- = D - p. 
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Figure 3. The positron potential V,. The 
image plane is located at zi = 1.6 au. The 
image potential intersects the correlation 
part at zo = 2.665 au. 

Here ,U is the bulk chemical potential and D is the electronic relaxation surface dipole 
barrier calculated according to the formula 

D = V , ( X )  - V , ( - X )  = 4n Z [ P ( Z )  - P,,,,,(z)] d z  il 
All these quantities are illustrated in figure 2. The values of @- and D obtained for A1 
within various electron-gas theories are compared with experimental data in table 1. 
The present results are found to be in reasonable agreement with experiment. 

Here a remark should be made. As is well known, real metals differ from an electron 
gas and the surface parameters are strongly dependent on the crystal face. Fortunately, 
the results for the Al( 100) face are quite close to those obtained within the jellium model 
(Monnier and Perdew 1978). As concerns the other faces, band-structure calculations 
are required. The fact that for the Al(100) surface the jellium model seems to be a 
reasonable approximation encouraged us to consider our calculations as reliable ones, 
the more so as the experiment of Lynn et a1 (1985) was performed for the Al(100) face. 

3.2. Annihilation characteristics 

The positron potential V ,  and the positron wavefunction q+ obtained in this work are 
presented in figures 3 and 4, respectively. The value of the binding energy (relative 
to vacuum), EB = -3.12 eV, is in reasonable agreement with the experimental one, 
-3.03 T 0.05 eV (Mills 1983 and references quoted therein). It should be pointed out 
that the calculations of q+ were also performed for non-shifted image potential (zI = 
0). However, in this case the result for EB = - 1.86 eV seemed to be very poor and we 
abandoned this model. 

The resulting two-dimensional momentum distribution 

N P I I , P ~ )  = J ~ ( p ) d p ,  

as well as the one-dimensional projections 
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z (units o f  2 x / k , )  

( a )  IPM 

Figure 4. The positron density 1 q - ( z )  1 2. 

Figure 5. Two-dimensional momentum distributions N(pll, p ,  ) obtained within IPM and 
enhanced model according to equations (9) and (12), respectively. The right-hand direction 
corresponds t op ,  and the left-hand one topllI Momenta are expressedin units of milliradians. 

and 

calculated within the IPM (equation (9)) and the fully correlated model (equation (12)) 
are presented in figures 5 and 6, respectively. In figure 6 the spectra are normalised to 
the same peak height. In figure 6 N(P,) are denoted in both cases (IPM and enhanced) 
by full curves and N(p11) by broken curves. The bulk material (isotropic) spectra are 
quoted for comparison and are given by dotted curves. We also quote (shown by the 
chain curve) the values of N(p l l )  obtained within MDA for IPM in the way described 
in 9: 2 . 3 .  Remarkable differences between the values of N(p11) obtained according to 
formulae (9) and (10) are seen. This shows that MDA is not consistent with the definition 
Of ACAR distribution in the case of metal surfaces, and a great deal of caution is necessary 
in drawing any conclusions about surface spectra from this formalism. 
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8 (inrod) 

Figure 6 .  One-dimensional momentum distributions N ( p , )  (full curve) and N(p11) (broken 
curve) obtained within IPM and enhanced models. The inverted parabola, corresponding to 
bulk material, is denoted by the dotted curve. The chain curve corresponds to N(pl,) obtained 
within MDA (formula (IO)) for IPM. 

In figures 5 and 6 it can be seen that including electron-positron correlations causes 
narrowing of ACAR spectra and reverses anisotropy. Let us introduce, for convenience, 
the anisotropy factor r ] ,  defined as the ratio of FWHM of N ( p , )  to FWHM of N(pll). The 
isotropic ACAR spectra are characterised by r ]  = 1. In our calculations the factor r ]  
decreases from IPM value r]IPM = 1.10 to qenh = 0.91 in the enhanced model. This change 
of the anisotropy direction, although predicted by Lynn et a1 (1985) (cf. ref. 15 of their 
work while the position ofp, = 0 is moved), is the first theoretical one in the literature. 

Anisotropy of ACAR spectra in both models, i.e. enhanced and IPM, still occurs (within 
9% and lo%,  respectively). Here a more detailed discussion is necessary. The FWHM of 
N(p11) and N ( p , )  are narrower in the enhanced model than in IPM. The relatively 
stronger narrowing of N ( p , )  in the enhanced model is the main reason for the change 
of anisotropy direction. In our opinion the enhancement of electron density on the 
positron site (and therefore narrowing of N(p, ) )  is overestimated. It should be remem- 
bered that, in our computations, Kahana-type momentum-dependent enhancement 
factors were used. On the other hand, one of the basic assumptions of Kahana’s (1963) 
approach is that there is a spherically symmetric shape of the electronic screening charge 
around a positron (Kahana 1963, Rubaszek and Stachowiak 1988). This assumption is 
not valid near the metal surface. The strong electric field due to the surface dipole barrier 
distorts the screening cloud distribution around a positron located near the surface or 
outside the metal. Screening electrons are pulled off from the positron and attracted to 
the metal. Of course, the total screening charge is conserved but the density of electrons 
on the positron site decreases. Therefore, the momentum-dependent local enhancement 
factors ~ ( p ,  2) and local annihilation rates T(z) are diminished. Thus, there is a real need 
to determine the theoretical values of ~ ( p ,  z )  and T(z). Preliminary calculations of 
screening charge distribution around a positron moving from the metal to vacuum were 
performed by Inglesfield and Stott (1980) within the random-phase approximation (RPA) 
and by Jensen and Walker (1988) based on weighted-density approximation (WDA). 
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These authors proved the decrease of electron density on the positron as the positron 
approaches the metal surface. According to the remarks of Inglesfield and Stott (1980), 
‘the polarisation cloud, which is spherical in the bulk, distorts and is left behind as the 
positron approaches the surface; as the positron leaves the metal the cloud flattens along 
the surface and becomes the classical image charge . . . as the positron approaches the 
surface the polarisation cloud becomes detached’. It was concluded that the positron 
almost completely ‘loses’ its screening cloud on leaving the metal. In our opinion the 
results are not so dramatic but generally they are apparently correct. It is well known 
that the RPA, used by Inglesfield and Stott (1980), does not give a satisfactory account 
of electron-positron correlations even in the range of metallic densities (it is correct for 
high densities only). In contrast to the results of Inglesfield and Stott, the screening 
cloud calculated by Jensen and Walker (1988) is never completely detached from a 
positron. According to the formalism of Jensen and Walker, the density of electronic 
screening charge on the positron (located at r )  is equal to p( r ) [ {  + (8nn(r))-’], where n 
is an effective electronic density obtained within WDA. This fact, however, could be 
attributed to the lack of self-consistency in the approach. Therefore, self-consistent 
calculations of screening charge around the surface positron are necessary. These cal- 
culations are just in the course of being performed. 

From these remarks it follows that the Kahana-type enhancement factors, and any 
others obtained for the bulk material, are overestimated for the surface problem. 
Moreover, it was verified by us that decreasing values of ~ ( p ,  z )  cause a decrease of 
anisotropy. In this test the real values of ~ ( p ,  Y,(z ) )  were replaced by their biparabolic 
approximation 

E ( P ,  r s )  = a(rs> + W d P 2  + C ( Y S l P 4 .  

This slight underestimation of E (Rubaszek and Stachowiak 1985) increases the ani- 
sotropy factor q by about 1 %. It should be remembered that within the enhanced model 
the anisotropy is reversed with respect to IPM. This means that we switch from qIPM > 1 
(resulting from any other theories) to qenh < 1 when the local enhancement factor 
(equation (12)) is applied. This, as well as the increase of q when E is diminished, allows 
us to conclude that the present approach leads to isotropic ACAR spectra (characterised 
by the value q = 1) only if proper local momentum-dependent enhancement factors are 
used. 

The ACAR spectra obtained within the present formalism are narrower than experi- 
mental ones (FWHM of N ( p , )  and N(p11) are equal to 4.86 and 5.27 mrad, respectively, 
versus the experimental value of 7.1 mrad) but in close agreement with the theoretical 
result of Platzman and Tzoar (1986) (FWHM = 4.8 mrad). This discrepancy between the 
theoretical and experimental results could be attributed to a few reasons. First, there is 
the electron-gas model used in this work. However, this objection should not be treated 
literally because the electronic properties of the Al(100) face are very close to those of 
a jellium surface (Monnier and Perdew 1978). More problematic is the way in which the 
positron potential and the positron wavefunction are determined, These calculations 
are not self-consistent and the results for q + ( z )  are as reasonable as the approximations 
used for computing it. The position of the image plane, zI, and the form of the electron- 
positron correlation energy .E,,,, could affect the positron wavefunction as well. The 
enhanced ACAR spectra are strongly dependent on the values of q + ( z )  (cf. equation 
(12)) and they are too narrow. On the other hand, the agreement between the resulting 
binding energy EB and the experimental value substantiates the model used in the 
present work. Without doubt the self-consistent calculation of q + ( z )  is desired and 
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the two-component density-functional theory (cf. , e.g. Lundqvist and March 1983, 
Chakraborty 1982, Boronski and Nieminen 1985) seems to be promising in this case (cf. 
also Jensen and Walker 1988). 

The steps, vacancies and irregularities of the surface are neglected in our formalism 
whereas in real metals they should occur. Therefore, this difference between experi- 
mental and theoretical FWHM should not be discouraging. 

The positron lifetime at an A1 surface was computed by us in two numerically 
different ways: according to formulae (13a) and to (13b)-(13c). The resulting values 
were equal to t l  = 420 ps and t2 = 405 ps, respectively. The roughly 4% difference 
between tl and t2 is due to minor numerical errors. 

Both t1 and t2 are significantly shorter than the experimental value teXp = 580 ps 
(Lynn eta1 1984). Here the arguments concerning the values of ~ ( p ,  r,) should be quoted 
once again. Outside the surface the screening cloud is polarised, losing its spherically 
symmetric shape. Therefore, the positronium-like system is more like an excited P state 
than the ground S state. In the classical spherically symmetric system the density of 
electrons on the positron site cannot be less than that corresponding to the free posi- 
tronium, and therefore the (local) lifetime is limited by to = 500 ps. Near the surface 
the positronium S state is mixed with the excited P state (Platzman and Tzoar 1986), and 
for this reason the lifetime increases. Diminishing the values of local enhancement 
factors E (which are overestimated) increases the positron lifetime. Here, also, reliable 
calculations of the electronic cloud screening the surface positrons are necessary. Finally 
it should be added here that the recent calculations of total annihilation rate performed 
by Jensen and Walker (1988) cannot be treated as definitive ones and, in our opinion, 
should be treated as quantitative only because of the lack of self-consistency in the 
formalism. 

4. Conclusions 

In the present work the ACAR spectra for positrons trapped at an ideal A1 surface are 
determined within the correlated electron-positron model based on self-consistent 
calculations of electron density profiles within the jellium model. The electronic proper- 
ties of the A1 surface resulting from the presented approach are found to be in reasonable 
agreement with experimental data. According to the remarks of Monnier and Perdew 
(1978) the jellium model seems to be satisfactory for investigating the Al(100) face. 
Nevertheless, including the potential of the lattice would obviously improve our for- 
malism. Particularly, abandoning the one-dimensional model and switching to the three- 
dimensional one would enable us to investigate, for example, defects of the surface 
(Brown et a1 1988a, b). This problem, however, is very complicated numerically and we 
suppose it is still open. On the other hand, our calculations are only approximate and, 
in order to make real progress, first of all the self-consistent positron model should be 
introduced. Namely, the method of determining v + ( z )  and V+(z)  should be modified 
(cf. Jensen and Walker 1988). Also the Kahana-type local momentum-dependent 
enhancement factors ~ ( p ,  r,)  should be replaced in formula (12) by their surface ana- 
logues. Calculations of the surface enhancement factors are now in progress. 

Despite its deficiencies, the present formalism seems to be advantageous because it 
leads to quantitatively correct results for ACAR spectra. First of all, applying the local 
enhancement factors causes a relatively strong narrowing of N ( p , )  up to reversing the 
anisotropy, giving N(p1,) broader than N ( p , )  (while in IPM it is narrower-cf. figure 6). 
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The resulting ACAR spectra are only slightly anisotropic and diminishing the values of 
momentum-dependent enhancement factors (which are overestimated) allows one to 
cancel anisotropy and to obtain isotropic ACAR from the A1 surface, in agreement with 
the experiment of Lynn et a1 (1985). The reversal of anisotropy obtained in this work 
(for the first time theoretically in the literature), leading to an isotropic shape of ACAR 
spectra, seems to be an unexpected feature because in the jellium model the positron is 
only localised perpendicular to the surface and it is completely extended in the surface 
plane. Since including local electron-positron correlations in the formalism (equation 
(12)) decreases the anisotropy factor q in comparison with its IPM value qIPM 3 1, we 
suppose that the isotropic shape of the experimental ACAR spectra should be attributed 
to these correlations. On the other hand, there is the question of which of the two 
features of ~ ( k ,  r )  in formula (12)-their selectivity (momentum dependence) or locality 
(Y dependence)-is the more responsible for this decrease of anisotropy factor. This will 
be investigated in our future work. Finally it should be stressed here that our conclusions 
disagree with those drawn by Brown et a1 (1987, 1988a, b). This is due to the fact that 
these authors compared the spectra obtained within two different formalisms: IPM 
spectra were calculated by Brown et a1 according to the exact ACAR formula (9) with 
proper electron wavefunctions while in the enhanced model (equation (10)) plane waves 
were used, instead of qjk(r), in formula (8) (cf. also Rubaszek 1989). If surface ACAR 
spectra calculated according to MDA formula (10) with Brand-Reinhaimer annihilation 
rate (enhanced model) were compared with those obtained from (10) with Sommerfeld 
annihilation rate (IPM), a decrease of anisotropy would occur as well. 

Another point is how far the IPM result is model-sensitive, since the 10% anisotropy 
of IPM ACAR spectra can be compared with 9% reversed anisotropy of the enhanced 
model. In the region where the positron experiences image forces, the electronic screen- 
ing cloud should be completely detached from a positron and therefore no enhancement 
of electron density on the positron should occur ( E  = l ) ,  as within IPM. On the other 
hand, the positron wavefunction in ACAR formulae (equations (10) and (12)) is localised 
in the image-correlation well where electron-positron correlations are important and 
IPM is not satisfactory. If these correlations are neglected in the whole surface region, the 
resulting IPM positron lifetime, obtained according to formula (1%) with IPM annihilation 
rate rIPM(z) = 16np(z) or according to (12) and 13a) with E = 1, must appreciably 
exceed the experimental value z = 580 ps (Lynn et a1 1984). (Using our data for qj+(z) 
and p(z) in equation (13b) we have got the IPM positron lifetime equal to 5794 ps, i.e. 
one order of magnitude longer than the experimental one.) Therefore, although IPM 
could lead to less or more isotropic surface ACAR spectra, depending on the choice of 
electron and positron wavefunctions (Lou Yongming 1988, Brown et a1 1988a, b), 
nevertheless the positron lifetime obtained within IPM is always overestimated and 
therefore IPM results cannot be treated as reliable. In contrast, the lifetime resulting 
from the enhanced model balances between its (overestimated) IPM value and its (under- 
estimated) one corresponding to the use of bulk local partial (equations (12) and (13a)) 
or total (formula (13b)) annihilation rates. These conclusions are common for positron 
lifetime z and anisotropy factor (the latter is overestimated within IPM and under- 
estimated if the local electron-positron correlations E corresponding to the bulk material 
are used in equation (12)). 

It is worthwhile to mention here that the experimental anisotropic ACAR from a 
Cu(121) surface, measured by Howell et a1 (1985), seems to confirm rather than con- 
tradict the present formalism. It should be remembered that copper is a transition metal 
and that the contribution of d electrons to the annihilation is significant, Recently it has 



9258 A Rubaszek and J Lach 

been found, both theoretically and experimentally (Singh et a1 1986, Jarlborg and Singh 
1987, Sormann 1987,1988, Daniuk 1989a,b), that in transition metals the effect of de- 
enhancement occurs (this effect was first predicted by Fujiwara et al (1972)). The energy- 
dependent electron-positron local enhancement factors E appeared to be decreasing 
functions of energy for some energy bands (especially d bands). For instance, in Ni, d 
states near the Fermi energy are not enhanced but effectively depressed (Singh et a1 
1986). De-enhancement effects are more pronounced where d electrons are present 
near the Fermi energy EF (Le. where EF is near the top of the d band). It should be 
remembered that Cu is a typical metal in which the latter occurs. Therefore, in Cu, there 
is no reason for the strong relative narrowing of N ( p ,  ) to be as strong as in Al. Moreover, 
for Cu, the electron-gas model is obviously unsatisfactory and exact band-structure 
calculations are necessary. However, conceptual difficulties arise here. The con- 
ventional band-structure calculation methods (e.g. LAPW or LMTO) fall down because of 
violating the periodicity conditions near the metal surface. For determining N(p)  the 
effective energy-dependent local enhancement factors (Daniuk et a1 1985, 1987) seem 
to be more appropriate. 

As follows from these considerations, the problem of slow-positron interaction with 
clean metal surfaces is still open and this work is only an attempt to explain some 
experimental results. A1 seems to be simple enough and therefore convenient for 
theoretical investigations but even in this case many unsolved questions remain. For 
more complicated metals, e.g. Cu, band-structure calculations are required. Surface 
defects, steps and irregularities create another field for theoretical investigations. 
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